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It is challenging to compare amyloid PET images obtained with different radiotracers. Here, we introduce a 

new approach to improve the interchangeability of amyloid PET acquired with different radiotracers through 

image-level translation. Deep generative networks were developed using unpaired PET datasets, consisting of 

203 [ 11 C]PIB and 850 [ 18 F]florbetapir brain PET images. Using 15 paired PET datasets, the standardized uptake 

value ratio (SUVR) values obtained from pseudo-PIB or pseudo-florbetapir PET images translated using the gen- 

erative networks was compared to those obtained from the original images. The generated amyloid PET images 

showed similar distribution patterns with original amyloid PET of different radiotracers. The SUVR obtained from 

the original [ 18 F]florbetapir PET was lower than those obtained from the original [ 11 C]PIB PET. The translated 

amyloid PET images reduced the difference in SUVR. The SUVR obtained from the pseudo-PIB PET images gen- 

erated from [ 18 F]florbetapir PET showed a good agreement with those of the original PIB PET (ICC = 0.87 for 

global SUVR). The SUVR obtained from the pseudo-florbetapir PET also showed a good agreement with those of 

the original [ 18 F]florbetapir PET (ICC = 0.85 for global SUVR). The ICC values between the original and gener- 

ated PET images were higher than those between original [ 11 C]PIB and [ 18 F]florbetapir images (ICC = 0.65 for 

global SUVR). Our approach provides the image-level translation of amyloid PET images obtained using different 

radiotracers. It may facilitate the clinical studies designed with variable amyloid PET images due to long-term 

clinical follow-up as well as multicenter trials by enabling the translation of different types of amyloid PET. 
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. Introduction 

Amyloid positron emission tomography (PET) has been widely used

o noninvasively evaluate cortical amyloid deposits. Quantitative assess-

ent of amyloid PET is crucial in Alzheimer’s disease (AD) given that

he amyloid PET is an objective biomarker that predicts the future out-

ome of patients with mild cognitive impairment (MCI) ( Herholz and

bmeier, 2011 ). Amyloid PET imaging was initially conducted using

 

11 C]Pittsburgh Compound-B (PIB) ( Klunk et al., 2004 ; Navitsky et al.,

018 ). However, various 18 F-labeled radiotracers, such as florbetapir,

orbetaben, and flutemetamol, are widely used in the clinic now

 Clark et al., 2011 ; Curtis et al., 2015 ; Sabri et al., 2015 ). These re-

ently introduced 18 F-labeled radiotracers have shown comparable per-

ormance to [ 11 C]PIB in estimating cortical amyloid load with better
✩ Data used in the preparation of this article were obtained from the Alzheimer’s 

he investigators within the ADNI contributed to the design and implementation of A

his report. A complete listing of ADNI investigators can be found at: http://adni.lon
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vailability in terms of half-life of the radioisotope. However, the lim-

ted interchangeability between the radiotracers caused by the different

inetics, acquisition setting, and analysis methods prevents long-term

linical trials as well as multicenter comparisons ( Villemagne et al.,

012 ; Wolk et al., 2012 ). For example, as cognitive disorders need to be

anaged with long-term follow-up, many patients previously recruited

or clinical trials before the wide use of 18 F-labeled radiotracers conse-

uently only have [ 11 C]PIB PET data. In these patients, it is difficult to

valuate the longitudinal changes in amyloid deposits due to the lack of

nterchangeability of the radiotracers. 

To overcome the limited interchangeability, recent studies have in-

estigated the relationship between the quantitative measures on PET

cans with [ 11 C]PIB and 18 F-labeled radiotracers ( Landau et al., 2013 ;
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, 
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Table 1 

Demographics and clinical diagnosis of training and test dataset. 

[ 11 C]PIB PET training 

dataset ( n = 203) 

[ 18 F]florbetapir PET 

training dataset 

( n = 850) 

Paired test dataset 

( n = 15) 

Age 73.2 ± 7.5 

(55.0 - 87.0) 

72.3 ± 7.2 

(55.0 - 91.0) 

73.8 ± 5.2 

(62.0 – 81.0) 

Sex 

(M:F) 

133:70 443:407 11:4 

Diagnosis 

(AD:MCI:NC) 

48:115:40 250:76:172 5:8:2 
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illemagne et al., 2012 ). In addition, a working group has proposed

 ‘Centiloid’ scaling method to standardize the quantitative amyloid

eposit estimation by PET. In the Centiloid scaling method, typical

myloid-negative PET scans have a mean of zero Centiloid unit and typ-

cal amyloid-positive PET scans score on average 100 regardless of the

adiotracers used ( Klunk et al., 2015 ). This method is relatively easy to

se for scaling amyloid PET images acquired using the 18 F-labeled ra-

iotracers. However, voxel-wise translation at the image level is limited

ecause the linear Centiloid scaling parameters for all the voxels are the

ame. 

To date, the direct translation of different amyloid PET images to

chieve better interchangeability has not been attempted yet. Rapidly

dvancing deep generative models allow the synthesis of new images

rom a given image in various imaging applications ( Goodfellow et al.,

014 ; Zhu et al., 2017 ). Recently, the image generation based on the

eep neural networks has been used for amyloid PET quantification

ithout the help of structural MR images and PET attenuation correction

ithout CT-based attenuation maps ( Choi and Lee, 2018 ; Hwang et al.,

018 ; Kang et al., 2018 ; Lee, 2020 ; Leynes et al., 2017 ). However, the

eneration of different amyloid PET images is challenging because of the

imited number of patients who underwent paired amyloid PET scans

e.g. [ 11 C]PIB and [ 18 F]florbetapir) performed in short interval. Here,

e propose a method to translate between [ 11 C]PIB and [ 18 F]florbetapir

ET images by applying deep generative networks to achieve the radio-

racer interchangeability at the image level. 

. Materials and methods 

.1. Patient population 

In this study, image data were collected from the Alzheimer’s Disease

euroimaging Initiative (ADNI) ( http://adni.loni.usc.edu ) database.

he ADNI was launched in 2003 as a public-private partnership led

y principal investigator Michael W. Weiner, MD, VA Medical Center

nd University of California, San Francisco. The ADNI includes sub-

ects from over 50 sites across the US and Canada. The primary goal

f the ADNI is to develop combined biomarkers by testing whether se-

ial imaging, biological markers and clinical, and neuropsychological as-

essment can be combined to measure the progression of mild cognitive

mpairment and early Alzheimer’s disease. For up-to-date information,

ee http://www.adni-info.org . 

Eight hundred fifty subjects who underwent [ 18 F]florbetapir PET as

 baseline amyloid imaging study were included as a training dataset.

nother dataset consisting of 203 [ 11 C]PIB PET scans were also down-

oaded from the ADNI. [ 11 C]PIB PET scans obtained both at base-

ine and at follow-up visits were included in this cohort. Notably, we

rained a deep generative model on all [ 18 F]florbetapir and [ 11 C]PIB

ET scans regardless of the acquisition site. The demographic data of

he two datasets are summarized in TABLE 1 . To validate our model,

e used the data from the patients who underwent both [ 11 C]PIB and

 

18 F]florbetapir PET scans. Fifteen patients had both PET scan data

btained with 1- or 2-year intervals. Note that these [ 11 C]PIB and

 

18 F]florbetapir PET scans were not used for the training. 
2 
.2. Image preprocessing 

To train and test the networks, minimally preprocessed ADNI PET

ata were used. Only coregistration and averaging were conducted on

he data (second type). These PET data were acquired from different

ardware systems and reconstructed with different parameters. Both the

 

18 F]florbetapir and [ 11 C]PIB image data consisted of four 5-min frames

cquired 50–70 min after the tracer injection. To minimize image blur-

ing due to head motion, image registration was applied to the 5-min

ynamic frames ( Jagust et al., 2015 ). Because no spatial transformation

as performed, all PET images had different shapes and variable voxel

izes. The images were resampled to have a voxel size of 2 × 2 × 2 mm 

3 

sing trilinear interpolation. This processing was applied to both train-

ng and test data. We started with these images for proposed task and its

valuations. Further image transformation was not performed; thus, all

ET images had different shapes and positions. To stabilize the training,

e also normalized the intensity of each input image to range from − 1

o 1. The images were rescaled back at the testing phase. 

.3. Development of generative model 

The cycle generative adversarial network (CycleGAN) structure was

mployed to translate the unpaired amyloid PET images ( Zhu et al.,

017 ). FIG. 1 shows a detailed structure of the proposed networks.

here are two generators and two discriminators. A generator converted

 

11 C]PIB images to [ 18 F]florbetapir images and another generator con-

erted [ 18 F]florbetapir images to [ 11 C]PIB images. Each discriminator

as trained to differentiate real PET images from generated images.

or the training of CycleGAN, the following three losses were employed

 Zhu et al., 2017 ). The first loss is the GAN loss retaining the generative

haracteristics of the neural networks ( Goodfellow et al., 2014 ). 

 𝐺𝐴𝑁 

(
𝐺 1 , 𝐺 2 , 𝐷 1 , 𝐷 2 

)
= 𝐿 

𝑃𝐼𝐵 
𝐺𝐴𝑁 

(
𝐺 1 , 𝐷 1 

)
+ 𝐿 

𝐴𝑉 45 
𝐺𝐴𝑁 

(
𝐺 2 , 𝐷 2 

)
 

𝐴𝑉 45 
𝐺𝐴𝑁 

(
𝐺 1 , 𝐷 1 

)
= 𝔼 𝑏 ∼𝑝 𝐴𝑉 45 

[
𝑙𝑜𝑔 𝐷 1 ( 𝑏 ) 

]
+ 𝔼 𝑎 ∼𝑝 𝑃𝐼𝐵 

[
log 

(
1 − 𝐷 1 

(
𝐺 1 ( 𝑎 ) 

))]
 

𝑃𝐼𝐵 
𝐺𝐴𝑁 

(
𝐺 2 , 𝐷 2 

)
= 𝔼 𝑎 ∼𝑝 𝑃𝐼𝐵 

[
𝑙𝑜𝑔 𝐷 2 ( 𝑎 ) 

]
+ 𝔼 𝑏 ∼𝑝 𝐴𝑉 45 

[
log 

(
1 − 𝐷 2 

(
𝐺 2 ( 𝑏 ) 

))] (1) 

here 𝑎 and 𝑏 are the sampled elements from each probabilistic distribu-

ion of images, [ 11 C]PIB and [ 18 F]florbetapir, respectively. The 𝐺 1 and

 2 are the generators that translate amyloid images, and the 𝐷 1 and 𝐷 2 
re the discriminators in the CycleGAN structure. The second loss is the

econstruction loss comparing the output of the second generator from

he input. This loss enables the output of the generative model to be

imilar to the input of the networks. 

 𝑐𝑦𝑐 

(
𝐺 1 , 𝐺 2 

)
= 𝐿 

𝑃𝐼𝐵 
𝑐𝑦𝑐 

(
𝐺 1 

)
+ 𝐿 

𝐴𝑉 45 
𝑐𝑦𝑐 

(
𝐺 2 

)
 

𝑃𝐼𝐵 
𝑐𝑦𝑐 

(
𝐺 1 

)
= 𝔼 𝑏 ∼𝑝 𝐴𝑉 45 

[‖‖‖𝑏 − 𝐺 1 
(
𝐺 2 ( 𝑏 ) 

)
1 
‖‖‖
]

 

𝐴𝑉 45 
𝑐𝑦𝑐 

(
𝐺 2 

)
= 𝔼 𝑎 ∼𝑝 𝑃𝐼𝐵 

[‖‖‖𝑎 − 𝐺 2 
(
𝐺 1 ( 𝑎 ) 

)
1 
‖‖‖
] (2) 

The final one was an identical loss. Followed by this loss, each gen-

rator should produce similar images to the given input that is from real

amples. The authors of ( Zhu et al., 2017 ) showed that the results were

ore robust with an identical loss. 

 𝑖𝑑 

(
𝐺 1 , 𝐺 2 

)
= 𝐿 

𝑃𝐼𝐵 
𝑖𝑑 

(
𝐺 1 

)
+ 𝐿 

𝐴𝑉 45 
𝑖𝑑 

(
𝐺 2 

)
 

𝑃𝐼𝐵 
𝑖𝑑 

(
𝐺 1 

)
= 𝔼 𝑏 ∼𝑝 𝐴𝑉 45 

[‖‖𝑏 − 𝐺 1 ( 𝑏 ) 1 ‖‖]
 

𝐴𝑉 45 (𝐺 2 
)
= 𝔼 𝑎 ∼𝑝 

[‖‖𝑎 − 𝐺 2 ( 𝑎 ) 1 ‖‖]
(3) 
𝑖𝑑 𝑃𝐼𝐵 

http://adni.loni.usc.edu
http://www.adni-info.org
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Fig. 1. Schematic of the proposed CycleGAN structure. Three losses indicated in the figure correspond to Eqs. (1) , (2) , (3) and (4) . 
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S  
The above three losses are combined with the following hyperpa-

ameters determined empirically. 

 = 𝐿 𝐺𝐴𝑁 

+ 100 × 𝐿 𝑐𝑦𝑐 + 10 × 𝐿 𝑖𝑑 (4)

We combined DenseNet and U-Net architectures and used them as a

enerator ( Huang et al., 2016 ; Ronneberger et al., 2015 ). Detailed net-

ork structures are shown in Supplementary Table 1 . We also applied

he spectral normalization method to the convolutional operation of the

iscriminator to stabilize the training of the GAN ( Miyato et al., 2018 ).

hree-dimensional image, not two-dimensional slices, was fed into the

etworks producing the pair of amyloid PET images to consider the re-

ional PET activity distribution. To augment the number of data set for

raining the network, the input of the network was randomly rotated

rom − 10 to 10° and flipped for each of the three-axes. The input image

imension was 64 × 64 × 36, which was two-fold downsampled from the

riginal image after cropping useless margin to reduce the memory us-

ge of the neural networks. The same number of imaging data randomly

elected from each of the datasets, [ 11 C]PIB and [ 18 F]florbetapir, was

sed for each mini-batch. The number of mini-batch was one, and we

rained the network for 1000 epochs. The learning rate used for training

he neural network was 0.0001. 

.4. Evaluation of amyloid PET scans 

After training proposed neural network, the results were reviewed

y a 10-year experienced nuclear medicine physician (H.C). To vali-

ate our model for translating amyloid PET images with different ra-

iotracers, global and regional SUVR estimated from the paired sam-

les were compared using cerebellum gray matter as a reference re-

ion. We used 15 paired [ 11 C]PIB and [ 18 F]florbetapir PET images as

ell as the corresponding 3D structural T1 MRI images scanned closest
3 
o the [ 11 C]PIB except for one subject ( Supplementary Table 2 ). Im-

ges were translated into their individual space by the neural network.

or the visual comparisons, [ 11 C]PIB images were co-registered to the

 

18 F]Florbetapir images using the SPM12. This process was performed

n the subject’s individual space for the visualization. For the quanti-

ative analyses, both sets of PET images were spatially normalized us-

ng the deformation fields estimated from the same MRI by statistical

arametric mapping (SPM12) ( Ashburner, 2007 ; Ashburner and Fris-

on, 2005 ). The PET registration and spatial normalization of [ 11 C]PIB

nd [ 18 F]florbetapir data were conducted separately to the MRI. We

xtracted regional PET counts from five regions, which were the com-

osite VOIs of the global cerebral cortex, frontal cortex, cingulated cor-

ex, superior parietal cortex, and lateral temporal cortex defined in the

AL template ( Tzourio-Mazoyer et al., 2002 ) after spatially normaliz-

ng each image to the MNI space. The counts of the five VOIs were di-

ided by the counts of the cerebellum to calculate the SUVR. We also

enerated subject-space SUVR images using registered [ 11 C]PET and

 

18 F]Florbetepir via dividing registered images by extracted cerebellum

ounts. Linear regression was performed between the SUVRs obtained

rom the generated images and those obtained from the original images.

dditionally, we calculated the intraclass correlation coefficients (ICCs)

f the regional SUVRs between the generated and original images to as-

ess the consistency of the measurements ( McGraw and Wong, 1996 ):

𝐶𝐶 = 

𝑉 𝑏 

𝑉 𝑎 + 𝑉 𝑏 
, (5)

here 𝑉 𝑎 is the variance between methods and 𝑉 𝑏 is the variance be-

ween measurements. The denominator equals to the total variance of

he data. 

We also conducted voxel-wise comparisons using paired t -test in the

PM12 after smoothing SUVR images with an isotropic 3D Gaussian
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lter of an 8 mm full width at half maximum (FWHM). The voxel size

as isotropic 2 mm. Thresholds of p ⟨ 0.0001 and k ⟩ 500 contiguous

oxels were applied to the results. Multiple comparison correction was

ot conducted because of the small number of the test dataset. 

For the comparison, we conducted the Centiloid scaling of [ 11 C]PIB

nd [ 18 F]florbetapir PET images. The results of the replication of level-1

nalysis in Klunk et al. were given in Supplementary Figure 1 . Stan-

ard Centiloid cortical and whole cerebellar VOI templates were applied

o the spatially normalized PET images to obtain SUVR. The SUVR val-

es for each tracer were then transformed into Centiloid units by the

ollowing linear equations ( Klunk et al., 2015 ; Kolibash, accessed 12

ugust 2020): 

 L 𝑃𝐼𝐵 = 100 ×
(
SUV R 𝑃𝐼𝐵 − 1 . 009 

)
∕1 . 068 (6)

 L 𝐴𝑉 45 = 

(
196 . 9 × SUV R 𝐴𝑉 45 

)
− 196 . 03 (7)

Additionally, CL scales for non-standard VOIs (above 5 regions) were

alculated by multiplying and adding the scaling parameters to them.

here were no processing differences among observed PET data, gener-

ted pseudo PET images and images used to derive Centiloids. 

The visual review of paired PET data was to find whether the gen-

rated images changed the visual reading in terms of the amyloid pos-

tivity. Images were interpreted as binary categories, amyloid positive

nd negative, without clinical information as well as whether the images

ere generated or real images. 

. Results 

Amyloid PET images corresponding to the administration of dif-

erent radiotracers were generated from original PET images. Pseudo-

 

18 F]florbetapir PET images were generated from [ 11 C]PIB PET images,

nd pseudo-[ 11 C]PIB PET images were generated from [ 18 F]florbetapir

ET images using the neural networks. FIG. 2 shows the represen-

ative pseudo-[ 18 F]florbetapir and pseudo-[ 11 C]PIB PET images for

n amyloid-negative case. It also shows the generated PET images

or an amyloid-positive case. The original [ 11 C]PIB uptake pattern

or the amyloid-positive case is largely different from the original

 

18 F]florbetapir uptake pattern due to differences in the binding affini-

ies. Nonetheless, the generated PET images reflect these different pat-

erns. 

To validate the generated PET images and assess the radiotracer in-

erchangeability, we performed a head-to-head comparison between the

riginal and generated PET images in terms of the SUVRs ( FIG. 3 ). Re-

ional and global SUVRs were estimated from five predefined VOIs (the

lobal cerebral cortex and the frontal, cingulate, superior parietal, and

ateral temporal cortices). As shown in FIG. 3 A , the SUVR calculated

rom the original [ 18 F]florbetapir is relatively lower than that calcu-

ated from the original [ 11 C]PIB, which is consistent with the results

rom a previous report ( Klunk et al., 2015 ). The calculated ICC between

riginal and pseudo-[ 18 F]florbetapir images for the global cortex was

.87. Likewise, the ICC between original and pseudo-[ 11 C]PIB images

or the global cortex was 0.85; however, the ICC result between the

riginal [ 11 C]PIB and [ 18 F]florbetapir images yielded a lower value,

.65 ( TABLE 2 ). In the Centiloid cortical VOI, our method yielded

omparable ICC results to the Centiloid-scaled data (0.94 for original

 

18 F]florbetapir vs. pseudo-[ 18 F]florbetapir, 0.91 for original [ 11 C]PIB

s. pseudo-[ 11 C]PIB, and 0.93 for Centiloid-scaled [ 18 F]florbetapir vs.

etiloid-scaled [ 11 C]PIB). The ICC between the original image pairs,

 

18 F]florbetapir and [ 11 C]PIB PET, was only 0.45 in the Centiloid VOIs.

oreover, the ICC values on deep gray showed that the Centiloid scal-

ng did not improve the correlation. On the other hand, our method im-

roved the correlation in the deep gray as a region with relatively low

myloid deposits ( Supplementary Table 3 ). The five ROIs except for

entiloid VOI were based on the cerebellum gray reference region and

he results using Centiloid reference region (whole cerebellum) were
4 
lso given in Supplementary Table 4 . The slope from the linear re-

ression performed between original and pseudo-[ 18 F]florbetapir PET

as 1.092 for the global cortex SUVR although some samples devi-

ted from the perfect agreement. The slope from the linear regression

erformed between the original and pseudo-PIB PET data was 1.043.

he SUVR subtraction images between [ 11 C]PIB and [ 18 F]florbetapir

ET and their corresponding generated images are presented in FIG. 4

 The relatively lower SUVR in the original [ 18 F]florbetapir PET than

he original [ 11 C]PIB PET are noticeable in the amyloid-positive case,

hich is in line with FIG. 3 A , and this difference was remarkably

educed in the generated PET images. Bland-Altman plots for the SU-

Rs of the paired PET data are shown in ( FIG. 5 ). The Bland-Altman

lot for Centiloid scaled data for standard Centiloid VOI was also pre-

ented in Supplementary Figure 2 . The comparison between the orig-

nal [ 11 C]PIB and [ 18 F]florbetapir PET images showed relatively high

ias and high variance. Quantification using the generated PET data, the

seudo-[ 18 F]florbetapir and pseudo-[ 11 C]PIB PET data, showed almost

nbiased results for all types of VOIs. These findings were confirmed in

he voxel-wise statistical analysis shown in FIG. 6 . 

. Discussion 

In this study, we proposed a deep generative model trained using

npaired data to translate amyloid PET images acquired with different

adiotracers. The emergence of deep learning with convolutional neu-

al networks has led to many innovations in image processing fields

s well as in medical imaging ( Choi and Lee, 2018 ; Hegazy et al.,

019 ; Hwang et al., 2018 ; Lee, 2020 ; Nie et al., 2016 ; Park et al.,

018 ; Prasoon et al., 2013 ; Ronneberger et al., 2015 ; Yi et al., 2019 ;

onekura et al., 2018 ). The deep learning applications were mainly

ade through supervised learning methods requiring paired datasets

etween inputs and labels, which are difficult to collect in a real clinical

nvironment. Accordingly, generative modeling that does not require

xplicit labels has received much attention ( Yi et al., 2019 ). In particu-

ar, image generation using unpaired data allows the utilization of var-

ous real medical image data given that the unpaired data are widely

vailable in the hospitals. 

Our suggested method could provide an image-level translation that

nables a comparison of amyloid PET images acquired with different ra-

iotracers. Previously, [ 11 C]PIB PET had been used before the wide use

f amyloid PET scans with [ 18 F]-labeled radiotracers. As cognitive disor-

ers require long-term follow-up, particularly for clinical trials, an inter-

hangeable quantification of amyloid deposits using different radiotrac-

rs is required when patients have had previous [ 11 C]PIB PET images.

lthough the recent Centiloid scale provides an interchangeable and

ommon quantification scale, it is limited to linear scaling of all voxels of

UVR images. Amyloid deposits in the brain have a specific spatial pat-

ern that is associated with disease progression ( Hanseeuw et al., 2018 ).

oreover, subsets of dementia show different distribution patterns of

myloid deposits ( Frings et al., 2015 ; Mesulam et al., 2014 ). Therefore,

here are several advantages of regional SUVR calculation and image

oxel-level analyses over the normalized global SUVR as image-based

iomarkers. Our results showed that the global SUVR evaluation is also

ossible using the deep generative model with a similar performance

o the Centiloid scaling. Furthermore, our method allows the applica-

ion of other atlases and VOIs for the regional analysis ( TABLE 2 ) . A

ew cases in this study showed minor differences in the detailed radio-

racer distribution patterns between [ 11 C]PIB PET and [ 18 F]florbetapir

ET. For instance, the trained network detected regional uptake differ-

nces in areas such as the occipital lobes ( FIG. 2 , indicated with yellow

rrows). In this regard, the quantification of the regional amyloid de-

osit pattern, as well as the spatial differences rather than the simple

lobal SUVR estimation, would be important in the assessment of amy-

oid PET. Besides, the ICC values for deep gray matter regions shows

ow the two methods, Centiloid and the proposed method, could result
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Fig. 2. Qualitative results from paired subjects. (A) The orig- 

inal [ 18 F]florbetapir and [ 11 C]PIB images for an amyloid- 

negative case, (B) a pseudo-[ 18 F]florbetapir image gener- 

ated from the [ 11 C]PIB PET images and a pseudo-[ 11 C]PIB 

image generated from the [ 18 F]florbetapir PET images for 

the amyloid-negative case, (C) the original [ 18 F]florbetapir 

and [ 11 C]PIB images for an amyloid-positive case and (D) a 

pseudo-[ 18 F]florbetapir image generated from the [ 11 C]PIB 

PET images and a pseudo-[ 11 C]PIB image generated from the 

[ 18 F]florbetapir PET images for the amyloid-positive case. (For 

interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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2  
n different quantification results in brain regions with relatively low

pecific bindings ( Supplementary Table 3 ) where the amyloid depo-

ition in these regions can be used as a diagnostic measure of disease

rogression ( Cho et al., 2018 ; Hanseeuw et al., 2018 ). 

The translation of amyloid PET with different radiotracers could fa-

ilitate multicenter and long-term follow-up clinical studies by enabling

he use of various amyloid PET images. Our approach could provide in-

ormation on the temporal changes in the amyloid distribution pattern in

he brain for each subject if the subject undergoes longitudinal imaging

ith amyloid PET using [ 18 F]-labeled radiotracers as well as [ 11 C]PIB.

ecently, various [ 18 F]-labeled radiotracers have been used for the as-

essment of amyloid deposits in many centers. The same method pro-
5 
osed in this study can be applied to the translation between amyloid

ET scans with different [ 18 F]-labeled radiotracers. As amyloid PET has

ecome a more widely available test, studies based on retrospective,

ulticenter, and large PET data with various tracers may be feasible

hen our model is applied. 

In this study, the model responsible for the translation of amyloid

ET was trained and validated using PET data from multiple centers

f the ADNI, which include different PET protocols and machines. We

rained the model using PET images with minimally processed data to

eneralize the model. Various preprocessing steps, including image reg-

stration and Gaussian smoothing for image harmonization ( Jagust et al.,

015 ), are available in the ADNI. However, to develop a generalized
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Fig. 3. Correlation plots for the regional SUVRs between paired [ 11 C]PIB and [ 18 F]florbetapir data and between the original data and the generated images. Each 

column shows different regions: the global cerebral cortex, frontal cortex, cingulated cortex, superior parietal cortex, and lateral temporal cortex. The thick red line 

is the regression line and dashed red lines are the 95% confidence intervals (CI). (A) Original [ 11 C]PIB vs. original [ 18 F]florbetapir, (B) original [ 18 F]florbetapir vs. 

pseudo-[ 18 F]florbetapir and (C) original [ 11 C]PIB vs. pseudo-[ 11 C]PIB. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 2 

Intraclass correlation calculation for five predefined regions based on AAL template and a Centiloid VOI on the test dataset. The numbers in parentheses mean 

lower/upper bounds of 95% confidence interval (CI). 

Centiloid VOI Global cerebral cortex Frontal Cingulate cortex Superior parietal Lateral temporal 

Pseudo-[ 18 F]florbetapir 

vs. 

Original 

[ 18 F]florbetapir 

0.94 

(0.84 – 0.98) 

0.87 

(0.66 – 0.95) 

0.89 

(0.72 – 0.96) 

0.92 

(0.78 – 0.97) 

0.92 

(0.77 – 0.97) 

0.77 

(0.45 – 0.92) 

Pseudo [ 11 C]PIB vs. 

Original [ 11 C]PIB 

0.91 

(0.76 – 0.97) 

0.85 

(0.63 – 0.95) 

0.82 

(0.56 – 0.94) 

0.94 

(0.83 – 0.98) 

0.90 

(0.74 – 0.97) 

0.93 

(0.81 – 0.98) 

Original [ 11 C]PIB vs. 

Original 

[ 18 F]florbetapir 

0.45 

( − 0.04 – 0.77) 

0.65 

(0.25 – 0.87) 

0.62 

(0.18 – 0.85) 

0.66 

(0.26 – 0.87) 

0.50 

(0.02 – 0.80) 

0.73 

(0.39 – 0.90) 

Centiloid scaled 

[ 11 C]PIB vs. 

Centiloid scaled 

[ 18 F]florbetapir 

0.93 

(0.80 – 0.97) 

0.82 

(0.57 – 0.94) 

0.87 

(0.66 – 0.95). 

0.89 

(0.73 – 0.96) 

0.88 

(0.70 – 0.96) 

0.72 

(0.35 – 0.89) 
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w  
odel that could be applied to PET images with different protocols and

achines, we directly used PET data without harmonization. Our ap-

roach of training without data harmonization for the ADNI indicates

hat the model can be used for PET images obtained from various cen-

ers with different hardware and reconstruction algorithms. Nonethe-

ess, since we only applied our model to ADNI data to develop the

ranslation between [ 18 F]florbetapir and [ 11 C]PIB PET, further vali-

ation with different tracers is needed. Furthermore, the translation

etween different types of amyloid PET with 18 F-labeled radiotracers

s also clinically needed to compare PET scans acquired in multiple

enters. As a proof-of-concept study of the image-level translation of

myloid PET, various types of translation can be developed and opti-

ized using unpaired data sets. Note that paired data from two differ-

nt amyloid PET scans obtained from the same patients are not required

or developing translational models based on our approach. There-
6 
ore, our generative model can be flexibly customized for the clinical

tudy. 

One of the limitations of the study is the training data imbalance:

he numbers of [ 18 F]florbetapir and [ 11 C]PIB scans were quite different.

his is a frequently occurred problem especially for medical imaging. To

esolve the issue, we applied on-the-fly random augmentation in which

andomly rotated or flipped images were provided to the networks as

nput each time, significantly improving the performance. The data im-

alance was the intrinsic problem of the ADNI database, nonetheless,

he proposed network worked well for this unbalanced dataset. It is be-

ause CycleGAN’s feature and the advantage are that image-level gen-

ration is possible even if the distribution of two datasets is different.

nother issue in the training dataset is that [ 11 C]PIB set included lon-

itudinal data for the same participant. However, the follow-up images

ould not the same data due to the differences in amyloid deposit level
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Fig. 4. Difference map for SUVR between the generated image from trained neural networks and labels. For a better visibility, skull stripping was applied to both 

images. (A) Amyloid negative case and (B) amyloid positive case. 

Fig. 5. The Bland plot of regional SUVRs. SUVRs obtained from paired [ 11 C]PIB and [ 18 F]florbetapir and between the original data and the generated data were 

compared. Each column shows different regions: the global cortex, frontal cortex, cingulated cortex, superior parietal cortex and lateral temporal cortex. The x -axis 

is the average between samples. Dashed lines represent the mean and the range of the 95% confidence intervals of the difference among SUVRs. (A) [ 11 C]PIB vs. 

[ 18 F]florbetapir, (B) [ 18 F]florbetapir vs. pseudo-[ 18 F]florbetapir and (C) [ 11 C]PIB vs. pseudo-[ 11 C]PIB PET. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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nd geometrical position and the test-retest variability of the PET scan.

egarding the scan date difference, [ 18 F]florbetapir PET was acquired

fter [ 11 C]PIB PET because of the protocol of the ADNI cohort (mean:

44.13 days, Supplementary Table 2 ). Therefore, it could be a cause

f bias in the quantification of SUVR due to increased amyloid deposits

uring follow-up. 

The other limitation in the application of the generative model to

edical imaging is that the generated image is a virtual image that po-

entially contains artifacts. It is regarded as a hallucinatory effect that

reates unwanted structures ( Cohen et al., 2018 ). In this study, we em-
7 
loyed the generative model to synthesize pseudo-amyloid PET images

cquired with different tracers to achieve the interchangeability in quan-

ification rather than for direct diagnostic purposes. This means that

ven if there are some structural abnormalities caused by the genera-

ive model, large complications do not arise because the major output of

he generative model is a quantitative result calculated from predefined

OIs or voxel-wise spatial patterns. We showed that the mean SUVRs

btained from the generated model are virtually equivalent to those ob-

ained from amyloid PET scans acquired with different radiotracers in

he independent dataset. Moreover, differently classified amyloid posi-
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Fig. 6. Voxel-wise comparisons of SUVR images using raw images and pseudo images. (A) [ 11 C]PIB vs. [ 18 F]florbetapir, (B) [ 18 F]florbetapir vs. pseudo- 

[ 18 F]florbetapir and (C) [ 11 C]PIB vs. pseudo-[ 11 C]PIB PET. ( p ⟨ 0.0001 and k ⟩ 500). 
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ivity or negativity from original images was not observed in the careful

isual inspection of all generated images. Thus, at least, the quantifica-

ion of regional SUVRs could be used for the interchangeable compar-

son. The usefulness of unpaired datasets provides many opportunities

or image translation problems. In future work, the proposed method

an be expanded to multi-to-multi-tracer cases using the methods de-

cribed in ( Almahairi et al., 2018 ; Choi et al., 2018 ) if the PET images

or each dataset are prepared in advance. 

onclusions 

In this study, we proposed a deep learning model based on a gen-

rative adversarial network to translate amyloid PET images obtained

ith different radiotracers. The different uptake patterns resulting from

he use of the different radiotracers were well generated. The translated

ET images could be used for the interchangeable quantification with

inimal bias and error. Furthermore, as the model provides image-level

stimation, regional SUVR patterns can be assessed in the generated

mages and compared for different types of amyloid PET images. As a

roof-of-concept study, our approach may be extended to various types

f amyloid PET images, facilitating clinical studies that require quantifi-

ation and image-level analyses of different amyloid PET images. 
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